If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+2d=3
We move all terms to the left:
d^2+2d-(3)=0
a = 1; b = 2; c = -3;
Δ = b2-4ac
Δ = 22-4·1·(-3)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4}{2*1}=\frac{-6}{2} =-3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4}{2*1}=\frac{2}{2} =1 $
| Y+3y+180=180 | | 18y-3y=20-30 | | 5(2p+3)-12p+9=3(3p-5) | | 5(2p+3)-3(3p-7)=5 | | 5(2p-3)-12p+9=3(3p-5) | | 34=w-11 | | −4n−2n=6 | | 15y=-10 | | 3^51=3x | | 4x-54+x=111 | | 4x-87+x=38 | | 30-5y+2y=9+y+3y | | 5x+5/2-1=9 | | 8x-(2x+5)=3x+25 | | Y=4x(8,5) | | 84=-6(x-10) | | 126=6a+6 | | -8=n/2+1 | | -99=9(x+7) | | 1,05^x=10 | | -4(1+4x)+6(-7x+6)=-26 | | 2(x-3Y)=10 | | 480=150+2.5x | | 4+6x+6x=-14+6x | | Y=20-9x | | -5-8x-4x=15-2x | | -5-5(4+7x)=35-5x | | 65-5(8-3x)=145 | | 3a+6.2=9.2 | | 2(x-1)-(6x+3)=x-3-3x | | 5y+19=6 | | -49=-9-13n |